巧用pandas进行数据处理

某一原始数据,在数据获取过程中少进行了一个strip处理,导致数据表现为:

,”
2015-01-01 02:56
“,0
,”2018-
01-01 02:56
“,0

其正常应该为一个时间型数据,如:

2015-01-01 02:56
2018-01-01 02:56

而此数据就无法导入数据库进行进一步的处理,因此需要先将其数据进行修正。首先想的是用sed、vi进行处理,但其都是在行上进行处理,而pandas可以在列上进行处理,使其处理不会影响到其他列,因此就使用pandas进行处理:

import pandas as pd
df=pd.read_csv('/path/to/do.csv')
df['ts_created']=df['ts_created'].str.replace('\n\s+','')
df.to_csv('/path/to/out.csv')

已发布

分类

来自

标签:

评论

《 “巧用pandas进行数据处理” 》 有 13 条评论

  1. purchase androxal generic dosage

    buy androxal generic cheap

  2. only enclomiphene free consult

    I want a enclomiphene perscription

  3. buy rifaximin tablets australia

    cheap rifaximin canada medicine

  4. buy cheap xifaxan canadian discount pharmacy

    buying xifaxan generic next day delivery

  5. online order staxyn price from cvs

    get staxyn buy germany

  6. Buy avodart no r x cheap

    avodart London over the counter

  7. dutasteride UPS SHIPPING COD

    can i get dutasteride at at wal-mart store without a prescrition

  8. purchase flexeril cyclobenzaprine usa mastercard

    cheapest buy flexeril cyclobenzaprine buy for cheap

  9. gabapentin without a rx

    cheapest buy gabapentin price at walmart

  10. get fildena buy virginia

    fildena shipped overnight without a prescription

  11. comprar kamagra contra reenbolso

    kamagra online pナ册dpis

  12. medicament kamagra sens ordonnance gratuit comprime

    fedex pendant la nuit kamagra

  13. buy cheap itraconazole price usa

    buying itraconazole canada discount

回复 order dutasteride generic version 取消回复

您的邮箱地址不会被公开。 必填项已用 * 标注